
Adaptive Ratio-Based-Threshold Gradient
Sparsification Scheme for Federated Learning

Jeong Min Kong
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

jeong.kong@mail.utoronto.ca

Elvino Sousa
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

es.sousa@utoronto.ca

Abstract—Federated learning (FL) is a distributed learning
paradigm that has received great attention over the past several
years due to its privacy-preserving property. As the models
involved in FL are usually dense and overparameterized however,
various studies are being conducted in gradient sparsification
to reduce the high communication overhead. While many of
the recently-presented schemes that are variations of top-k have
shown competitive inference accuracy convergence to the baseline
“vanilla” FL, they have a fixed sparsity rate throughout all of the
communication rounds, which leads to an unnecessary excessive
transmission of gradients as the global model converges. Fur-
thermore, the constant-threshold gradient sparsification method
called Threshold-ν, that is well-known for its dynamic rate, does
not account for the ratio between the gradient and the pre-
update parameter value, causing some gradients that are orders
of magnitude larger than the pre-update parameter values to be
neglected in the following aggregation process. In this paper,
we introduce a new algorithm that addresses both of these
issues, called adaptive ratio-based-threshold gradient sparsification
method. Our main idea is introducing a custom gradient sparsity
threshold for each local parameter based on their pre-update
value and a hyperparameter denoted as ψ. We demonstrate
through image classification experiments on MNIST and CIFAR-
10 datasets in both independent-and-identically-distributed (IID)
and non-IID settings that under optimal ψ, the gradient sparsity
rates adapt & increase as the global model converges, while si-
multaneously producing inference accuracies that are competitive
to vanilla FL.

Index Terms—Distributed Deep Learning, Federated Learning,
Gradient Sparsification

I. INTRODUCTION

Federated learning (FL) is a privacy-preserving distributed
learning framework that was first introduced in 2017 [1].
Unlike traditional distributed learning frameworks where raw
data is exchanged between the clients and the server, the
gradients of clients’ local neural networks are shared in FL. As
a consequence of this, the gradients of clients’ local models
are utilized to update the global model at the server, instead
of the raw data. There are various ways to aggregate the
local gradients, the most popular approach being Federated
Averaging (FedAvg). FedAvg was first introduced in ”vanilla”
FL, and it simply computes the weighted average of the local
gradients to update the global model. In vanilla FL, which is

979-8-3503-3559-0/23/$31.00 ©2023 Crown

Fig. 1. FL system architecture.

the most popular FL framework being used today, all of
the local gradients are sent to the server for aggregation.
However, it is important to highlight that most of the models
involved in FL are dense and overparameterized as discussed
in [2], and such nature puts an extremely heavy burden on the
communication systems. To reduce the high communication
overhead in FL, researchers have started exploring gradient
sparsification, which are methods that allow clients to transmit
only a subset of their local gradients to the server, while still
being able to produce global model inference accuracy close
to that of vanilla FL.

II. RELATED WORK AND CONTRIBUTION

Various gradient sparsification algorithms have been pre-
sented for FL in recent years. One of the most well-known
algorithms is called random-k, in which only the randomly-
sampled k gradients of client’s neural network are communi-
cated to the aggregation server during each communication
round [3]. Another popular algorithm is called top-k, and
in this approach, the largest k gradients of client’s neural
network are communicated to the aggregation server [4]. A
few variations of top-k have been introduced to yield improved
fairness, reduced computational load, and better inference ac-

curacy and convergence time compared to the original method,
such as FAB-top-k and rTop-k [5,6]. Furthermore, other novel
gradient sparsification methods based on fixed sparsity rates
have been proposed, most notably GradDrop [7] and adaptive-
quantization-based algorithm in [8]. In addition to gradient
sparsification, model pruning have also been extensively stud-
ied to reduce the communication bottleneck in FL, leading
to innovative techniques such as Complement Sparsification,
FedTiny, LotteryFL, and FL-PQSU [2,9,10,11].

While these algorithms have demonstrated competitive in-
ference accuracy and convergence time compared to vanilla
FL, most of them have a sparsity rate that is constant through-
out all of the communication rounds. As a consequence,
even when the global model begins to converge at higher
communication rounds, and there are thus less drastic local
parameter (weight/bias) updates compared to earlier commu-
nication rounds, the clients unnecessarily continue to transmit
the same number of gradients to the aggregation server. There
is a method well-known for having a dynamic sparsity rate,
called Threshold-ν [12], where all of the local gradients
that exceed a common threshold ν get transmitted to the
aggregation server, and those that fall below get accumulated
locally until they reach ν. However, this approach fails to take
into account the ratio between the gradient and the pre-update
parameter value, causing some gradients that are orders of
magnitude larger than the pre-update parameter values to be
neglected in the following aggregation process.

In this paper, we present a new gradient sparsification
algorithm that addresses both of the issues aforementioned,
while still maintaining competitive inference accuracy and
convergence time to the baseline vanilla FL. Unlike Threshold-
ν, our method introduces a custom gradient sparsity threshold
for each parameter based on their pre-update value. Fur-
thermore, we demonstrate through various experimentation
that the gradient sparsity rate in our method is adaptive,
and increases as the global model becomes more convergent,
unlike the fixed sparsity rate schemes that were previously
discussed.

III. METHODOLOGY

The algorithmic description of our proposed scheme is
shown in Algorithm 1. First, the aggregation server randomly
(uniformly) samples a subset of available clients that will
participate in FL. The aggregation server then broadcasts
the global model to the selected clients, and these clients
train the received model with their own, local data. After
the local training, each weight and bias of the local model
is examined for gradient sparsification. The gradient sparsi-
fication procedure is as follows: if the absolute gradient, ie.
the absolute difference between the updated local weight/bias
and the pre-update local weight/bias, is greater than ψ% of
the pre-update local weight/bias, then transmit the gradient to
the aggregation server; otherwise, do not transmit the gradient
to the aggregation server. ψ is a hyperparameter, and we
demonstrate in the experimentation section that the value of

Algorithm 1 Adaptive Ratio-Based-Threshold Gradient Spar-
sification Scheme
Definitions: ψ = hyperparameter, N = # of communication

rounds (based on the estimate of when the global model
will converge), M = # of randomly selected clients partic-
ipating in FL, J = # of parameters (weights and biases) in
global/local model, wt, t = 0, ..., N−1, = global parameters
at communication round t, wtj , j = 1, ..., J , = jth element
of wt, Di, i = 1, ...,M , = local dataset at client i, gti =
local gradient of client i at communication round t, gti,j =
jth element of gti

Output: wN
Broadcast randomly initialized w0 to the clients
for t = 0, ..., N − 1 do

At the clients:
Receive wt from aggregation server
for i = 1, ...,M do
gti ← ∇Loss(wt, Di)
for j = 1, ..., J do

if |gti,j | >
ψ
100 · w

t
j then

Keep gti,j
else
gti,j ← 0

end if
end for
Transmit gti to aggregation server

end for
At the aggregation server:
ĝt ← 1

M

∑M
i=1 g

t
i

wt+1 ← wt − ĝt
end for
return wN

ψ has a significant impact on both the gradient sparsity and
convergence of the global model. After collecting the sparse
gradients from its selected clients, the aggregation server em-
ploys FedAvg to update its global model. This entire process
is repeated until the global model converges. Note that we are
only considering gradient sparsification in the uplink (from
clients to aggregation server), as most bandwidth consumption
in FL arises in the uplink; however, this algorithm can also be
easily adapted for the downlink (aggregation server to clients).

IV. EXPERIMENTATION AND DISCUSSION

A. Experimentation Setting

We perform our experiments on image classifications tasks
using two of the most popular datasets, MNIST [13] and
CIFAR-10 [14]. Both MNIST and CIFAR-10 have 10 output
classes, MNIST containing grayscale images of handwritten
numbers between 0 and 9, and CIFAR-10 containing color
images of animals and transportation vehicles.

For all of our experiments, there is a total of 100 clients, in
which 10 of them are randomly (uniformly) selected to par-
ticipate in FL. We examine both independent-and-identically-
distributed (IID) and non-IID settings. In both settings, the

training dataset is evenly partitioned among the participating
clients. For the IID case, each client is randomly assigned a
uniform distribution over 10 classes. For the non-IID case,
each client is assigned images strictly from 1 or 2 classes,
that are non-overlapping with the images assigned to other
clients. Per communication round, 10 epochs of local training
is completed at each client.

We use two neural network architectures, multi-layer per-
ceptron (MLP) and convolutional neural network (CNN), for
each dataset & IID/non-IID setting described above. For both
MNIST and CIFAR-10, MLP has one hidden layer of 64 neu-
rons with ReLU activation, and an output layer with Softmax
activation. For MNIST, CNN consists of two convolutional
layers (10 and 20 output channels, respectively, with 5x5 filter,
stride of 1, and ReLU activation), max pooling (with 2x2
filter and stride of 1) after each convolutional layer, one fully-
connected (FC) layer of 50 neurons with ReLU activation, and
an output layer with LogSoftmax activation. For CIFAR-10,
CNN consists of two convolutional layers (6 and 16 output
channels, respectively, with 5x5 filter, stride of 1, and ReLU
activation), max pooling (with 2x2 filter and stride of 1)
after each convolutional layer, two FC layers (120 and 84
neurons, respectively, with ReLU activation), and an output
layer with LogSoftmax activation. For all, we use negative
log likelihood (NLL) as the loss function, stochastic gradient
descent (SGD) with momentum of 0.5 and learning rate of
0.01 as the optimizer, and 10 as the batch size.

B. Results

Figure 2 and 3 illustrate the gradient sparsity rates & global
model test inference accuracies at each communication round
for various values of ψ. Figure 2 is the outcome of training
MLP on the MNIST dataset, and Figure 3 is the outcome
of training CNN on the MNIST dataset. These plots show
that under optimal ψ in both IID and non-IID settings, as
the communication round progresses, the gradient sparsity
rate increases while simultaneously producing an inference
accuracy competitive to vanilla FL. In both of these examples,
the approximate optimal value of ψ is 100. This is because
when ψ is below 100, even though the inference accuracy
convergence is also similar to that of vanilla FL, the gradient
sparsity rate is always substantially lower than when ψ is 100.
On the other hand, when ψ is greater than 100, even though
the gradient sparsity rate is always higher than when ψ is
100, the inference accuracy convergence is significantly worse
compared to that of vanilla FL. Mathematically, we define
optimal ψ as ψ that maximizes the average gradient sparsity
rate across all communication rounds, under the constraint that
global model inference accuracies do not lie more than 5%
below that of vanilla FL for all communication rounds. At
the approximate optimal value of 100 in these MNIST experi-
ments, as the global model progressively converges through 10
communications rounds, the gradient sparsity rate constantly
adapts & climbs from already-high 77.68% to 94.38% for
MLP and from 74.24% to 92.72% for CNN in the IID setting,

(a) Avg. gradient sparsity rates in the IID setting.

(b) Avg. inference accuracies in the IID setting.

(c) Avg. gradient sparsity rates in the non-IID setting.

(d) Avg. inference accuracies in the non-IID setting.

Fig. 2. Avg. gradient sparsity rates and inference accuracies for MLP-MNIST.

(a) Avg. gradient sparsity rates in the IID setting.

(b) Avg. inference accuracies in the IID setting.

(c) Avg. gradient sparsity rates in the non-IID setting.

(d) Avg. inference accuracies in the non-IID setting.

Fig. 3. Avg. gradient sparsity rates and inference accuracies for CNN-MNIST.

and from 89.32% to 94.39% for MLP and from 86.88%
to 92.56% for CNN in the non-IID setting. In experiments
with CIFAR-10, we observed widely-varying optimal ψ values
with different neural network architectures and IID/non-IID
settings, which is contrasting to MNIST. More specifically, we
determined that the optimal ψ is 200 for MLP and 50 for CNN
in the IID setting, and 300 for MLP and 60 for CNN in the
non-IID setting. Despite this difference in behavior compared
to MNIST, substantial jumps in gradient sparsity rates were
similarly made at the optimal ψ values. For instance, at their
respective optimal value, the gradient sparsity rate ascended
from already-high 87.56% to 96.01% in the IID setting and
from 94.39% to 98.14% in the non-IID setting, for MLP.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel FL gradient sparsification
scheme that selects sparse gradients based on local parameters’
pre-update values and hyperparameter ψ. Through image clas-
sification experiments on MNIST and CIFAR-10 in both IID
and non-IID settings, we have shown that under optimal ψ, the
gradient sparsity rates adapt & increase as the global model
converges, while concurrently outputting inference accuracies
close to that of baseline vanilla FL. In the future, we plan
to better understand the relationship between optimal ψ and
different types of datasets and neural network architectures in
both IID and non-IID settings. Through these studies, we aim
to develop more efficient generalized techniques for finding
optimal ψ, that can replace the current brute-force approach.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aguera
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. 20th Int. Conf. Artificial Intelligence and
Statistics, 2017, pp. 1273–1282.

[2] X. Jiang, and C. Borcea, “Complement sparsification: Low-overhead
model pruning for federated learning,” arXiv preprint arXiv:2303.06237,
2023.

[3] L. Song et al., “Communication efficient SGD via gradient sampling
with Bayes prior,” 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Nashville, TN, USA, 2021, pp. 12060-
12069.

[4] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and
C. Renggli, “The convergence of sparsified gradient methods,” in Proc.
Neural Inf. Process. Syst. (NeurIPS), 2018, pp. 5973–5983.

[5] P. Han, S. Wang, and K. K. Leung. “Adaptive gradient sparsification
for efficient federated learning: An online learning approach,” in Proc.
IEEE 40th Int. Conf. Distrib. Comput. Syst. (ICDCS), Singapore, 2020,
pp. 300–310.

[6] L. P. Barnes, H. A. Inan, B. Isik, and A. Özgür, “rTop-k: A statistical
estimation approach to distributed SGD,” IEEE J. Sel. Areas Inf. Theory,
vol. 1, no. 3, pp. 897–907, Nov. 2020.

[7] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proc. Conf. Empirical Methods Natural Lang.
Process., Copenhagen, Denmark, Sep. 2017.

[8] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen, “Communication
quantization for data-parallel training of deep neural networks,” 2016
2nd Workshop on Machine Learning in HPC Environments (MLHPC),
Salt Lake City, UT, USA, 2016, pp. 1-8.

[9] H. Huang, L. Zhang, C. Sun, R. Fang, X. Yuan, and D. Wu, “FedTiny:
Pruned federated learning towards specialized tiny models,” arXiv
preprint arXiv:2212.01977, 2022.

[10] A. Li, J. Sun, B. Wang, L. Duan, S. Li, Y. Chen, and H. Li, “Lot-
teryFL: Personalized and communication-efficient federated learning
with Lottery Ticket Hypothesis on non-IID datasets,” arXiv preprint
arxiv:2008.03371, 2020.

[11] W. Xu, W. Fang, Y. Ding, M. Zou and N. Xiong, “Accelerating federated
learning for IoT in big data analytics with pruning, quantization and
selective updating,” in IEEE Access, vol. 9, pp. 38457-38466, 2021.

[12] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. of INTERSPEECH, 2015.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278-2324, 1998.

[14] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

