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Abstract—Various studies have explored the possibility of
utilizing unmanned aerial vehicles (UAVs) as last-mile package
delivery agents and aerial base stations in recent years. Despite
the tremendous attention in these applications, nearly all of the
studies assumed that the UAVs are serving just one purpose,
but not both simultaneously; however, for a number of reasons,
such as traffic congestion in the sky and energy & resource
inefficiency problems, it seems more suitable for the UAVs to be
serving several services concurrently. A few papers investigated
the case in which the UAV acts as both a package delivery agent
and a wireless transceiver, but in all of them, package delivery
time constraints were never considered. Stemming from the
observation that there are various ongoing industrial projects in
UAV-based package delivery, we investigate the possibility of pig-
gybacking on UAV-based package delivery infrastructures to also
provide wireless coverage, and consider the problem of designing
UAV trajectories that maximize the cumulative downlink sum
rate of the ground communication users while simultaneously
delivering packages under strict delivery time constraints. We
use deep Q-learning (DQL) to solve this optimization problem,
and demonstrate the successful formulation & implementation
of our algorithm through several simulations.

Index Terms—6G, UAV, Multi-Purpose UAV, UAV-Based Deliv-
ery, UAV-Assisted Communications, Deep Reinforcement Learn-
ing, Deep Q-Learning

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are expected to disrupt
various industries, including environment monitoring, surveil-
lance, filmmaking, and in particular, package delivery and 6th-
generation wireless communication systems (6G) [1]. Appli-
cation of UAVs in package delivery has gained tremendous
attraction over the past few years, as it is expected to reduce
the delivery cost (including the labor cost), delivery time,
and strong reliance on human resources. In recent years,
various literature investigated the idea of utilizing UAVs as
last-mile package delivery agents, and focused on the problem
of time & energy efficient scheduling and routing of UAVs
in different package delivery frameworks, including a fully
UAV-based delivery system as well as joint ground & UAV-
based delivery systems [3-6]. In wireless, numerous inves-
tigations have centered around the deployment of UAVs as
aerial base stations. UAVs’ abilities, such as mobility and

capability to reach an altitude of up to 300 m, would enable
wider ground wireless coverage and lead to more line-of-sight
(LOS) communication links, and many extensively considered
the problem of designing flight trajectories that can satisfy
the quality of service (QoS) constraints of the ground user
terminals/equipments (UEs) while considering factors such
as time & energy constraints, space accessibility limitations,
and obstacle avoidance [1,2]. Until now, almost all research
in these applications have assumed that UAVs are serving
just one service, ie. either package delivery or wireless, but
not both. However, for a number of reasons, it seems more
suitable for UAVs to be serving both purposes simultaneously.
As discussed in [7], utilizing different groups of UAVs for
different purposes could cause heavy traffic congestion in the
sky, and in turn, cause significant performance degradation
across both domains. Furthermore, large amounts of energy
and resources could be wasted by unnecessarily employing
excess number of UAVs. It is also important to highlight
that while there are various ongoing large-scale industrial
projects in UAV-based package delivery, such as Amazon
Prime Air [8], to the best of authors’ knowledge, no major
telecommunication companies have yet disclosed that they
will be developing the infrastructures necessary for enabling
UAV-assisted communications. Given that the expected launch
date of 6G is now less than 10 years away [9], it seems
more feasible for the telecommunication companies to instead
partner with UAV package delivery companies that already
have the required infrastructures for realizing UAV-assisted
communications. Of course, because these infrastructures are
developed solely for the purpose of UAV-based package de-
livery, providing wireless service would be a subordinate,
secondary objective. To this end, in this paper, we investigate
the possibility of piggybacking on UAV package delivery
systems to simultaneously provide wireless coverage. Under
the strict constraint that all of the required deliveries must
be completed in a specified time interval, we design UAV
trajectories that maximize the cumulative downlink sum rate
of the ground UEs with the utilization of deep reinforcement
learning (DRL).



II. RELATED WORK

As discussed, while extensive research has been done in the
design of UAV trajectory for UAV-assisted communications
and UAV-based package delivery individually, only a few
papers explored the possibility of multi-purpose UAVs. The
first paper to consider such scenario is [10]. In this paper,
the authors propose an algorithm to find the shortest UAV
trajectories for completing all of the required package deliv-
eries while simultaneously always providing uniform wireless
coverage in the considering region. While their idea of multi-
tasking UAVs is visionary, it is important to emphasize that in
their problem, the wireless QoS is considered as the constraint
instead of the package delivery time, which is exact opposite
to the formulation in our problem. A recent paper [7] also
studies the possibility of multi-purpose UAVs, by considering
a scenario in which a UAV simultaneously delivers a package
and collects & delivers internet of things (IoT) data from
a ground UE to a ground base station. The authors utilize
stochastic geometry and optimization techniques to design
trajectories that maximize the amount of collected & delivered
IoT data while minimizing the round trip time, subject to a
battery constraint. If it is possible for all of the IoT data to be
collected & delivered subject to the battery constraint, then
among all possible trajectories which can accomplish that,
they aim to find the one that has the minimum round trip
time. In the case not all of the IoT data can be collected &
delivered subject to the battery constraint, they aim to find the
trajectory that maximizes the collected & delivered IoT data
assuming all of the battery will be used. In their study, the only
concern related to package delivery is that it just needs to be
completed before the end of the round trip; how fast the task is
accomplished is not considered in the trajectory design. While
both IoT data collection & delivery and package delivery are
considered, in their formulated problem, the package delivery
task is secondary to the IoT task. Similar to the first paper,
this is fundamentally contrasting to our problem, in which the
wireless service task is secondary to the package delivery task.
In addition to this, while they only consider single-ground-
UE and single-package-delivery scenario, we consider a more
realistic multiple-ground-UEs and multiple-package-deliveries
scenario in our problem.

III. SYSTEM MODEL

Consider a map with dimensions N × N [m]. Let ng

represent the number of ground UEs in the environment, and
nd represent the number of delivery points in the environment.
Let G be a vector containing the 2-D coordinates of the
ground UEs, and Gi, i ∈ {0, 1, ..., ng − 1}, denote the 2-
D coordinate of the ith ground UE. Similarly, let D be a
vector containing the 2-D coordinates of the delivery points,
and Dj , j ∈ {0, 1, ..., nd − 1}, denote the 2-D coordinate
of the jth delivery point. There is one multi-purpose UAV
in the environment, positioned initially at a 2-D coordinate
denoted as (a, b). The objective of this UAV is to travel in a
trajectory that maximizes the cumulative downlink sum rate
of the ground UEs in the time duration that all of the package

Fig. 1. Illustration of the map described in our System Model.

deliveries must be completed. Let T [s] be this maximum
time in which all of the deliveries must be made. We denote
(xt, yt) as the 2-D coordinate of the UAV at time t, and
represent P ∈ RT as a vector containing the sequence of
UAV’s (xt, yt) coordinates at discrete time steps from t = 0
to t = T − 1 [s], ie. {(x0, y0),(x1, y1),...,(xT−1, yT−1)}. A
delivery is considered completed at delivery point j at time t
when UAV’s 2-D coordinate, (xt, yt), overlaps with the 2-D
coordinate of delivery point j, Dj . In this paper, we assume
that all of the ground UEs have the same height, and that the
UAV is always travelling at a fixed height with a constant,
average speed. We denote the height difference between the
ground UEs and the UAV as h [m], and the speed of the UAV
as v [m/s].

A. Communication Channel

The communication channel between the UAV and a ground
UE is modeled by log-distance path loss and Rayleigh small-
scale fading, and each link is modeled as an orthogonal point-
to-point channel.

The downlink information rate of the ith ground UE at time
t [bps/Hz] is defined as

Ri(t) = log(1 +
PT

PN
· Li(t)) (1)

where PT is the transmitted power from the UAV [W],
PN is the noise power [W], and Li(t) is the channel loss
corresponding to the ith ground UE at time t. The channel
loss is expressed by

Li(t) = di(t)
−α · 10XRayleigh/10 (2)

with α being the path loss exponent, XRayleigh being the
Rayleigh random variable with scaling factor = 1, and di(t)
being the distance between the UAV and the ith ground UE
at time t [m].

di(t) =
√
h2 + ∥(xt, yt)−Gi∥ (3)

The downlink sum rate at time t [bps/Hz] is given by

S(t) =

ng−1∑
i=0

Ri(t) (4)



and hence, the cumulative downlink sum rate over the time
duration T [bits/Hz] can be expressed as

C =

∫ T

t=0

S(t)dt (5)

B. Problem Formulation

We approximate the integral in (5) as a Riemann sum, and
define our optimization problem as the following:

max
P

C ≈
T−1∑
t=0

S(t)

s.t. 0 ≤ xt ≤ N

0 ≤ yt ≤ N

∥(xt, yt)− (xt−1, yt−1)∥ = v

(xt, yt) = Dj ∃ t,∀ j

(6)

IV. METHODOLOGY

We approach the non-convex maximization problem in (6)
using a DRL algorithm called deep Q-learning (DQL), which
is an effective method for solving optimization problems
that can be modelled as deterministic or Markov decision
processes. In this section, we first provide an overview of
reinforcement learning, and then present the formulation of
(6) as a DQL problem.

A. Reinforcement Learning Background

RL is an area of machine learning where an agent constantly
interacts with its environment in order to learn a sequence
of decisions/actions that yield the highest cumulative reward
possible [11]. The detailed flowchart diagram of RL is shown
in Figure 2. At time t, the agent receives state st from its
environment, which corresponds to the agent’s observations of
the environment at t. Based on st, the agent decides to take
action at, and as a consequence, the environment goes to a
new state st+1. After evaluating st+1, the environment gives
reward rt+1 to the agent, which is its feedback of agent’s
decision to take action at given st. Let S be a finite state
space, and A be a finite action space. Given a state s ∈ S,
the agent decides which action a ∈ A to take based on a
probability distribution called policy π, which is expressed as

π(a|s) = P [at = a|st = s] (7)

A function that indicates the quality of taking action a in state
s with policy π is called the Q-function, and is given by

Qπ(s, a) = Eπ{Ft|st = s, at = a} (8)

where Ft defined as

Ft =

T−t−2∑
k=0

γkrt+1+k (9)

γ ∈ [0, 1) is called the discount factor, and its significance
will be discussed later. From (8) and (9), it can be seen that
Qπ(s, a) is the expected discounted cumulative future reward
that the agent will receive if it chooses to proceed with action

Fig. 2. Reinforcement learning flowchart.

a from state s at time t, and then take actions based on policy
π from t+1 and onward. Thus, the higher the Q-value is for
some action a, the better choice it is for the agent to proceed
with action a. The discount rate γ plays a vital role in the
decision-making process because if γ is small, the Q-value is
dominated by short-term future rewards, whereas if γ is large,
the Q-value is the culmination of long-term future rewards.
This implies that as γ is smaller, the agent’s actions will be
more influenced by gaining short-term rewards, whereas as γ
is larger, the agent’s actions will be more influenced by gaining
long-term rewards.

The objective in Q-learning is to find policy π∗ that max-
imizes Qπ(s, a). The iterative update rule for approaching
Qπ∗

(s, a) is described by the Bellman equation

Qπ(st, at)← rt+1 + γmax
a

Qπ(st+1, a) (10)

In traditional Q-learning, the Q-function is represented by
a table. However, for scenarios with large state and action
spaces, this is not an ideal approach due to the exponentially-
growing table size. A good alternative is approximating the
Q-function using a deep neural network with parameters θ, ie.
Qπ(s, a, θ) [12]. This neural network-based Q-function is also
known as a Q-network, and the process of updating θ of the Q-
network to achieve Qπ∗

(s, a) is known as deep Q-learning. To
tune the Q-network, at every t, θ is first updated by minimizing
the squared error between (10) and Qπ(st, at, θ), expressed as

L(θ) = ((rt+1+γmax
a

Qπ(st+1, a, θ))−Qπ(st, at, θ))
2 (11)

After, θ is also similarly updated using a mini-batch of B
memories {st′ , at′ , rt′+1} from t′ < t.

B. DQL-Based Multi-Purpose UAV Trajectory Design

In our DQL problem, the UAV is the agent, and the map
containing the UAV, the delivery points, and the ground UEs
is the environment. Our objective is to find a Q-network
that solves the optimization problem in (6). We describe the
formulation of our state, action set, and reward function next.

We define the state at time t as

st = {t, xt, yt,W(t),C(t)} (12)

W(t) ∈ Rnd is a vector containing the 2-D distances be-
tween the UAV and all delivery points at t, ie. W(t)j =
∥(xt, yt)−Dj∥. C(t) ∈ Rnd is a vector containing the delivery
completion status of all delivery points at t, with C(t)j = 10 if



(a)

(b)

Fig. 3. Two simulation maps considered in this paper. Pink star is UAV’s
initial position, purple circles are the delivery points, and green circles are
the ground UEs.

the delivery has been completed at delivery point j by t, and
C(t)j = 0 if the delivery has not yet been completed at delivery
point j by t. The action set of the UAV is defined by A =
{’up’,’down’,’left’,’right’}, with ’up’ indicating +ve change in
y by v, ’down’ indicating -ve change in y by v, ’left’ indicating
-ve change in x by v, and ’right’ indicating +ve change in x by
v. As discussed before, because the height of the UAV is fixed
in our problem, change in height is not part of our action set.
Lastly, we define the reward at time t as rt = rat + rbt + rct . rat
is 400 × sum SNR at t, ie. 400 ·

∑ng−1
i=0

PT

PN
·Li(t), rbt is 2000

× # of deliveries completed at t, and rct is 4000 if the final
delivery has been completed at t, and 0 otherwise. As outlined,
a substantial reward is provided to the UAV upon successful
completion of a delivery. To ensure that the UAV fulfills all
deliveries, an additional large reward is granted if the UAV
finishes its last delivery. Furthermore, a reward proportional
to the sum SNR is given at every t to encourage the UAV to
strive for the highest cumulative sum rate possible, given the
delivery constraints.

Our Q-network has two hidden layers of 256 neurons with
ReLU activation, and uses Adam with a learning rate of 0.001
as the optimizer. The discount rate γ is set to 0.99, and the
mini-batch size B is set to 1000. The number of episodes (or
rounds) in which the UAV is trained is 20000. Furthermore,
we make the UAV take a random action (ie. not based on
the output of the Q-network) with a probability of 60% in the
first episode, and then let this randomness linearly decline at a
rate of -0.0025% per increase in episode; the purpose of this
mechanism is to allow the UAV to explore its environment
more in the earlier episodes.

V. SIMULATIONS

A. Simulation Set-Ups

To evaluate our DQL algorithm, we consider T = 35 and
T = 20 for each of the two maps shown in Figure 3. The
coordinates of the delivery points, D, the ground UEs, G,
and UAV’s initial position, (a, b), are vastly different for each

(a)

(b)

(c)

(d)

Fig. 4. Training curves of our algorithm for the map A, T = 35 scenario.
Note: The curves have been smoothed using convolution, ie. the moving
average algorithm, which is why it “appears” like there is a sudden decline at
the end of each curve. a) shows the UAV’s trajectory, b) shows the number of
deliveries completed by the UAV vs round number, c) shows the cumulative
sum rate vs round number, and d) shows the cumulative reward attained by
the UAV vs round number.

map, while N = 70, h = 10, v = 10, PT = 10, PN = 1, and
α = 2 for both maps. Moving forward, we will refer to the
map shown in Figure 3 a) as map A, and Figure 3 b) as map
B.

B. Results and Discussion

The training curves of our algorithm for the map A, T
= 35 scenario and map A, T = 20 scenario are shown in
Figure 4 and 5, respectively. For both of these scenarios, we
can observe that as the episode number increases, the UAV
learns to design a trajectory that simultaneously finishes more
package deliveries & achieves higher cumulative sum rate, on
average. Another observation that can be made, through the
final UAV trajectory plots, is that the area covered by the UAV
is proportional to T . This result is expected, because as the
time requirement to complete all of the deliveries is smaller,
the UAV also has less flexibility in its trajectory. Through the
final UAV trajectory plots & their corresponding P, we were
also able to observe that the UAV spends a great portion of
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Fig. 5. The smoothed training curves of our algorithm for the map A, T = 20
scenario. a) shows the UAV’s trajectory, b) shows the number of deliveries
completed by the UAV vs round number, c) shows the cumulative sum rate
vs round number, and d) shows the cumulative reward attained by the UAV
vs round number.

its time looping in the regions with the highest concentration
of ground UEs. More specifically, the UAV spent a staggering
40% of its total flight time staying bounded in the x = [30, 60],
y = [0, 30] region for the T = 35 scenario, and 55% for the T
= 20 scenario. From these results, we can deduce that the UAV
optimizes its trajectory to spend as maximal time possible
in the regions with the highest concentration of ground UEs,
given the delivery requirement constraint.

The training curves of our algorithm for the map B, T = 35
scenario and map B, T = 20 scenario are shown in Figure 6
and 7, respectively. Similar to map A scenarios, as the episode
number increases, the number of completed deliveries also
increases on average. However, the cumulative sum rate graphs
show a very interesting pattern that is contrasting to those of
map A scenarios. The cumulative sum rate first increases, and
peaks at approximately the same episode number in which the
deliveries completed is 2; then, it begins to decline until the
deliveries completed is 3, and remains relatively constant after.
When the UAV only has to complete 2 deliveries, it completes

(a)

(b)

(c)

(d)

Fig. 6. The smoothed training curves of our algorithm for the map B, T = 35
scenario. a) shows the UAV’s trajectory, b) shows the number of deliveries
completed by the UAV vs round number, c) shows the cumulative sum rate
vs round number, and d) shows the cumulative reward attained by the UAV
vs round number.

the two deliveries in the left region of the map, (10, 30) and
(20, 50), and loops around there for the whole time duration,
because that is the area where the ground UEs are most densely
populated; this is the reason why the cumulative sum rate is
maximum when the deliveries completed is 2. Once the UAV
has to complete 3 deliveries, it now has to leave the densely
populated left region & travel all the way to the right region,
where the remaining two delivery points exist. Due to this,
as the UAV learns to complete 3 deliveries more frequently,
the average cumulative sum rate first declines. However, in
this process of learning to complete 3 deliveries, the UAV
simultaneously constantly optimizes its trajectory to ultimately
determine a path that maximizes the cumulative sum rate while
doing 3 deliveries; once it is able to find this optimal path, the
cumulative sum rate then saturates. The crucial question is,
how could the maximum cumulative sum rate for 4 deliveries
be the same as for 3 deliveries? Because the third and fourth
delivery locations in the right region are very close to each
other, it is likely that the optimal path for 3 deliveries is
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Fig. 7. The smoothed training curves of our algorithm for the map B, T = 20
scenario. a) shows the UAV’s trajectory, b) shows the number of deliveries
completed by the UAV vs round number, c) shows the cumulative sum rate
vs round number, and d) shows the cumulative reward attained by the UAV
vs round number.

nearly identical to that for 4 deliveries, and there is thus no
discernible difference in the maximum cumulative sum rate
between the two.

The proportional relationship between the area covered by
the UAV and T from map A scenarios can also be seen in
map B scenarios. Furthermore, similar to map A scenarios,
we observe that the UAV spends a large amount of its time
in regions with the highest concentration of ground UEs. We
were able to calculate that the UAV spent 57% of its total flight
time staying in x = [0, 10], y = [20, 50] and x = [30, 50],
y = [40, 70] regions for the T = 35 scenario, and 45% for the
T = 20 scenario.

VI. CONCLUSION AND FUTURE WORK

This paper considered the possibility of piggybacking on
UAV package delivery infrastructures to simultaneously pro-
vide wireless coverage, and presented a novel DQL algorithm
for finding UAV trajectories that maximize the cumulative
downlink sum rate of the ground UEs under package de-

livery time constraints. In the future, in addition to further
extending this paper by considering 3-D trajectories and a
comprehensive battery consumption model for the UAV, we
will also investigate many unique problems arising in this
new aerial communications framework. For example, we will
account for the fact that unlike communication-only UAVs,
package delivery UAVs will have a dynamic weight throughout
the course of their flight, that alters after the release of
each package they carry. In the subsequent studies, we will
address varying package weights for different delivery tasks,
and investigate how the sequence in which the UAV dispenses
packages influences its battery usage and, consequently, the
optimal trajectories. In the wireless communications side,
we will consider multiple access channels, and techniques
such as time division multiple access (TDMA) and non-
orthogonal multiple access (NOMA). To this end, our future
work will aim to not solely optimize UAV trajectories, but
rather jointly optimize UAV trajectories and user scheduling
strategies. Other extensions will include carefully accounting
for the safety regulations posed on UAV operations, such as
prohibited aerial spaces and maximum weight limitations, and
considering the possibility of piggybacking on different UAV-
based services, such as joint ground & UAV-based package
delivery systems and aerial taxis.
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